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Abstract. Human-based genetic algorithms (HBGA) use both human
evaluation and innovation to optimize a population of solutions (Ko-
sorukoff, 2001). The novel contribution of HBGAs is an introduction of
human-based innovation operators. However, there was no attempt to
measure the effect of human-based innovation operators on the overall
performance of GAs quantitatively, in particular, by comparing the per-
formance of HBGAs and interactive genetic algorithms (IGA) that do
not use human innovation. This paper shows that the mentioned effect
is measurable and further focuses on quantitative comparison of the effi-
ciency of these two classes of algorithms. In order to achieve this purpose,
this paper proposes an interactive analog of the one-max problem, sug-
gests human-based innovation operators appropriate for this problem,
and compares convergence results of HBGA and IGA for the same pro-
blem.

1 Introduction

Interactive genetic algorithms (IGA) had extended evolutionary computation
(EC) to the areas where computational evaluation is not possible. This exten-
sion was made through the use of selection that is based on human evaluation
(Herdy, 1996). Nowadays there is a growing field of IGA applications from mu-
sic composition to architectural design (Takagi, 2001). A human-based genetic
algorithm (HBGA) did a similar thing by extending EC even further to the
area where it is hard or impossible to find a good representation and usable
computational innovation operators (Kosorukoff, 2000). The task of searching
solutions expressed in natural language is one of such problems. It could not be
approached by IGAs simply because we do not know how to do computational
recombination in a natural language. HBGAs have solved this problem by ou-
tsourcing innovation operators to humans in the same way as IGAs did earlier
with outsourcing evaluation. However, so far it has remained unclear if HBGAs
and human-based innovation operators are strictly limited to such areas where
human recombination is the only option or they can play a role in a field where
IGAs are applied. In this paper, we suggest an example of a problem for which
both HBGAs and IGAs are applicable. Although it is not very useful practically,
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this problem makes a good simple benchmark for both IGAs and HBGAs. Hence
it can play a role of the one-max problem for genetic algorithms using human
interaction. In this paper, we describe this problem in detail and perform a set
of experiments to compare the speed of convergence of those algorithms.

The rest of this paper is organized as follows: section 2 reviews recent re-
search on HBGAs, section 3 describes the application, section 4 describes the
problem we use for experiments, section 5 describes experimental settings, and
section 6 contains results of experiments. Finally, we conclude with discussion
of the results in section 7.

2 Background

Free Knowledge Exchange (FKE) project (3form.com, 1998) was the first ap-
plication of a technique now known as human-based genetic algorithm (HBGA)
for evolutionary knowledge management and collaborative problem solving. The
main goal of the project was efficient knowledge discovery, sharing, and inno-
vation. The technology got its current name and was systematically analyzed
after it had received several successful evaluations from its users (Kosorukoff,
2000; Kosorukoff, 2001). The idea of HBGA was mainly borrowed from a bu-
siness practice of outsourcing where operations that are not a part of the core
competence of an organization are delegated to some external agents which are
competent enough to choose their own method of executing those operations
such that the purpose of the operations can be accomplished.

Kosorukoff and Goldberg (2002) discuss HBGAs among two approaches to
evolutionary organization and innovation. Defaweux et al. (2003) discuss an ap-
plication of HBGA for storytelling and developing of marketing slogans, exami-
nes similarities between HBGA and a traditional GA. Based on experiments
with small groups of people, the authors show that HBGA stimulates creativity
and consensus, concluding that it has a great potential in fields like marketing,
industrial design, and creative writing. Goldberg et al. (2003) discuss HBGA as
a part of distributed innovation support system.

3 HBGA for Color Fitting

It is appropriate to say that the first application of HBGA has unintentionally
limited the range of its further applications to the tasks connected with evolution
of text messages expressed in some natural language. However, in this section
we will try to show that actually there is no such limitation. Our simple example
will be from a different domain which is classical to an IGA, but new to HBGA:
finding a color according to a user preference.

We do not have a problem with finding a genetic representation for color.
The most common way to represent color is a triple of R, G, B values, where
8 bits are allocated for each component, making 24 bits in total (Foley 1990;
Hunt, 1992). We will use this standard representation for our genetic coding.
Actually, RGB colormap is not the best for the purpose of designing a practical
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Fig. 1. An interface of HBGA for the interactive one-max problem

application, we would use HSV or LUV for this purpose (Douglas, 1996; Schwarz,
1987). However, since colormap conversions is far from the topic of this paper the
performance was sacrificed for simplicity and clarity. Here is a straightforward
example how purely white color (R, G, B) = (255, 255, 255) is coded:

11111111 11111111 11111111

It is clear that we can use a classic set of genetic operators to work with this
representation.

User interface is an important part of any interactive program. Repetitive use
of the same interface in interactive evolutionary computation makes its design
especially important, so we describe it in detail. A user is presented with 16
(population size) of colors (Figure 1). There are two panels for this purpose, the
left one is for unselected colors, the right one is for selected colors. Each panel is
divided into 4 by 4 grid and each cell color corresponds to an individual in the
population. The user selects color by clicking on the left panel with a mouse that
makes the selected cell move into the right panel. The cell in the right panel can
be deselected by another click of a mouse and moved back into the left panel.
This is all controls that IGA needs. HBGA, however, should allow user to create
new colors in addition to those created by usual mutation/crossover operators
(Goldberg, 1998) over the binary representation described earlier.

There are many ways to create an innovation interface. FKE application
(Kosorukoff, 2000) uses cut and paste controls to allow for human-based recom-
bination of textual information. This way would work here by allowing human to
modify genotype directly, though this is not a natural way for people to modify
color. In a practical HBGA application, different controls to adjust such para-
meters as brightness, hue, and saturation would be present, as well as a control
element providing the opportunity to mix two or more colors as artists usually
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do. However, some of these operators when applied to our task will allow con-
vergence in one or two iterations and this is not good for our research purpose
of algorithm comparison. Therefore, we had chosen operators from classical GAs
for research purpose only.

Before we will proceed with description of human-based innovation opera-
tors, we have to clarify how their computational peers are performed in our
algorithm. There is essentially no difference in crossover, except that parents are
stored together with individuals because they will be used later. The computa-
tional mutation operation is the following. The program will first select a parent
from the population, then another 24-bit binary string (mutation mask) will be
generated randomly such that the probability of 1 in each position equals to the
probability of mutation pm. A mutant is generated by XOR operation over two
strings. Both parents and a mutation mask are stored with an individual for
further use.

For human-based operators, each color cell in our HBGA has a slider as-
sociated with it. If a cell represents a result of one-point crossover, the slider
can be used to move the locus of crossover among 23 possible positions. If a
cell represents a result of mutation, the slider can rotate the mutation mask (a
binary string in which each locus of mutation is marked as 1, other loci are 0)
to the right or to the left depending where slider is moved. These operations
allow human user to modify the result of genetic operators, so innovation in this
algorithm is a collaborative result of human-computer interaction.

There are two modes of operation of the user interface. When we are in the
IGA mode sliders are not shown and we are only allowed to select. When the
HBGA mode is enabled we are allowed both to select and to modify individual
colors in the population. According to our experience, it does not take many
generations to play with this toy and converge to the colors of our preference.
This shows that both algorithms are working but we want something more than
just user satisfaction, something that allows for a more precise comparison.

4 Interactive One-Max Problem

In a usual IGA or HBGA application each user follows her own goal determined
by her preferences. However, in order to get some measurable results we need
to fix the goal as we cannot compare different preferences which can require
different amount of effort to achieve them. We had borrowed our goal from the
one-max problem, so we require to converge to the white color (255, 255, 255) or:

11111111 11111111 11111111

Despite of its apparent similarity with the one-max problem, the interactive
one-max problem has also some important differences:

1. People rarely can distinguish colors that are close to each other in the color
space, especially if they are not placed close to each other during comparison.
This is unlike the usual notion of fitness which distinguish very fine grades
of solution quality.
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2. The actual form of fitness function is not known to us. One user can follow the
brightness of colors, another can follow hue and saturation. Many strategies
of achieving the goal are possible. The efficiency of these strategies will not
be the same, but for the purpose of this paper we are interested only in the
averaged performance and how it depends on the type of the algorithm that
was used.

We have to address these two issues and we do it in the following two subs-
ections.

4.1 Defining White

We address the first difference by allowing a certain range of colors to be “white”
as determined by a margin. The RGB value of pure white color is (255, 255, 255).
We relax our requirement considering any color with all components greater than
245 to be white. The ability of people to distinguish colors is not the same and
we wanted that most of the users could achieve the goal with reasonable amount
of effort. The range of colors that fall within a margin is generally dependent
on the choice of progress measure. Criteria will be described shortly, but as a
general rule we treat color as white if it is not inferior to (245,245,245) according
to our selected criteria.

4.2 Progress Criteria

In our case, we do not have a direct access to a fitness function that humans
use when doing their selections. However, it is convenient to have some value
similar to fitness that we can track to know how close we are to achieve the goal.
We have three candidates for this purpose. They are brightness (M1), Euclidean
metric (M2), and minimum component metric (MS):

M1(R, G, B) = L1((255, 255, 255), (0, 0, 0)) − L1((255, 255, 255), (R, G, B))

= 255 ∗ 3 − ((255 − R) + (255 − G) + (255 − B)) = R + G + B

M2(R, G, B) = L2((255, 255, 255), (0, 0, 0)) − L2((255, 255, 255), (R, G, B))

= 255 ∗
√

3 −
√

(255 − R)2 + (255 − G)2 + (255 − B)2

MS(R, G, B) = LS((255, 255, 255), (0, 0, 0)) − LS((255, 255, 255), (R, G, B))

= 255 − max(255 − R, 255 − G, 255 − B) = min(R, G, B)

We have no preference among them at this point, so we will use all three in
our experiments. The identification of the fitness function people actually use in
our experimental task could be a topic of another research.
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5 Experiment Settings

We compare IGA and HBGA in two categories: generational and steady state.
Each user is asked to achieve the white color through a sequence of selections
only (IGA), and through a sequence of selections and modifications (HBGA).

The program will generate 16 color cells at each generation and present them
to a user. Probability of computational crossover and mutation were as usual
px = 0.75, pm = 1/24. Another parameter Fp determines the probability of
selection of preferred individuals (the right panel) for reproduction, and thus
determines the selective pressure. In our experiment Fp = 0.9, i.e. colors picked
by a user have 90% chance of being selected for reproduction, while other colors
have only 10% chance.

We invited 10 people to compare the algorithms and use intra-subject expe-
rimental design that suggests that each person tries to achieve white color using
four algorithms in the following sequence:

– IGA-Generational
– HBGA-Generational
– IGA-SteadyState
– HBGA-SteadyState

None of the users had any background in evolutionary computation and
supposedly did not understand the mechanism behind evolutionary programs
they are using. We had recorded every color in each generation, so that the
best fit in brightness, Euclidean and MS metric can be calculated. Then we had
averaged experimental results over ten replications.

6 Results

Figures 2-7 present the graphs of progress metrics: brightness (M1), Euclidean
metric (M2), and minimum component metric (MS). For each metric first IGA-
Generational and HBGA-Generational, then IGA-Steady State and HBGA-
Steady State are compared. In each plot, there are two horizontal lines. The
upper one represents the optimum values. The pure-white color (255, 255, 255)
should behave like this line. Similarly, the bottom one represents the margin
cut-off. It is based on our minimum requirement of white color (245, 245, 245).
The experiment is considered successful if the experiment sample passes through
the cut-off margin. The same information in summarized form is presented in
Table 1.

Overall, the curves of four algorithms increase over the generations and show
convergence. The curves for HBGA usually show an advantage starting from the
first generation. Both HBGA and IGA are able to accomplish the task succes-
sfully. However, the number of generations spent differs in about 3 times favoring
HBGA.

Measuring convergence in numbers of iterations does not give a complete
picture. Time comparison in Table 2 adds the missing part. A generation of our
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Table 1. Performance comparison for different progress metrics

Generational Steady State
Progress metric HBGA IGA HBGA Speedup HBGA IGA HBGA Speedup

M1 4 13 3.25 4 13 3.25
M2 6 14 2.33 5 14 2.8
MS 11 27 2.45 6 19 3.17

Table 2. Time performance comparison. Generations are shown according to MS cri-
terion

Generational Steady State
HBGA IGA HBGA Speedup HBGA IGA HBGA Speedup

Generation time (s) 9.2 5.5 - 14.2 6.5 -
Generations 11 27 - 6 19 -

Time to converge (s) 103.8 147.6 1.42 92.3 125.7 1.36

HBGA is approximate 2 times slower than a generation of an IGA. The higher
speed of convergence in terms of generations, however, compensates the slower
time of each HBGA generation, so our experiments show that HBGA has an
advantage in time to converge as well as the number of generations to converge.

The time of each generation in HBGA is dependent on a strategy that a
particular user chooses when using HBGA. It is clear that one can use HBGA
exactly as IGA just by ignoring all color modification sliders, in this case the time
of each generation and the number of generations to converge should be equal
to those of IGA. If one will use color modification heavily, then the time of each
generation will likely to grow, but the number of generations needed to converge
decreases. We didn’t investigate the influence of different users’ strategies in this
research.

There is a discrepancy in the average time of the same algorithm in gene-
rational and steady state mode, which is quite high and unexpected. There are
two possible reasons for those discrepancies. One possible reason connected with
the sequence of our experiments and human factors (Berk, 1982), in particular,
the fact that user fatigue increases over time, so we see slower response on suc-
cessive experiments. We cannot reliably establish this fact from our set of 40
experiments which were not designed to take user fatigue into account and have
no meaning to measure it.

7 Discussion

This paper has suggested a way to measure the performance of human-based ge-
netic algorithms quantitatively. We compared the results of these two algorithms
in their generational and steady-state implementations. The experimental results



990 C.D. Cheng and A. Kosorukoff

0 5 10 15 20 25 30
600

620

640

660

680

700

720

740

760

780

M
1 

(B
rig

ht
ne

ss
)

Generation

Optimum value
Margin
IGA−Generational
HBGA−Generational

Fig. 2. Brightness (M1) of the brightest individual in the population for generational
type of IGA and HBGA. The speedup factor of HBGA is 3.25
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Fig. 3. Brightness (M1) of the brightest individual in the population for generational
type of IGA and HBGA. The speedup factor of HBGA is 3.25
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Fig. 4. Measure M2 for generational type of IGA and SGA. The speedup factor of
HBGA is 2.33
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Fig. 5. Measure M2 for steady state type of IGA and HBGA. The speedup factor of
HBGA is 2.8
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Fig. 6. Measure MS for generational type of IGA and HBGA. The speedup factor of
HBGA is 2.45
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Fig. 7. Measure MS for steady state type of IGA and HBGA. The speedup factor of
HBGA is 3.17
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strongly support the idea that using human-based innovation operators can be
advantageous even in the area where we actually can perform all innovations
computationally. Algorithm using human-based innovation operators requires 2-
3 times less generations to converge. Supplemental materials for this research
can be found online at
http://www.derrickcheng.com/Project/HBGA/index.html.
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